1. Mount OPTALIGN[®] V Press ON and press (for inch mode) Laser on stationary Prism machine on machine to be moved (MTBM) 3:00 9:00 6:00

NOTE: Use inclinometers on both shafts if there is coupling backlash or when aligning uncoupled.

Important Note: The serial numbers of the Laser (Transducer) and Computer must match on an Optalign® V to have an an accurate system!

1425 N.W. 88th Avenue Miami, FL 33172 www.ludeca.com Phone: (305) 591-8935 (305) 591-1537 Fax: eMail: info@ludeca.com

LUDECA Inc.

2. Enter dimensions

*Use laser sidebeam to assist measurement. Fractions of an inch can be entered using the slash e.g. 9.75" can be keyed in as 9 3 / 4

3. Measure

- a) Press M, use red dust caps to track beam. Adjust prism along posts and with thumbscrew until 0 0 displayed.
- b) Measure in at least three of the four guarter-hour clock positions, as viewed towards the stationary machine:

4. Coupling misalignment

ENT cycles through vertical and horizontal Press offset and angular misalignment.

A positive offset means MTBM is higher or towards 3 o'clock.

Angular misalignment is in terms of the gap size. Positive means open above or towards 3 o'clock

┫ん⊕

If values are within required tolerances then the machines are aligned!

5. Foot corrections

Press . ENT cycles through vertical shimming, then horizontal move corrections.

Shim feet to the vertical values. Repeat measurements (see 3.) before proceeding to horizontal move.

6. Horizontal move

- a) Press 🙆 and turn shafts to 1:30 o'clock position, press ENT
- b) Adjust prism to display 0 0, press ENT.
- c) Move each highlighted foot until both front and back are aligned.

For very large horizontal corrections adjust horizontally before shimming.

Productive maintenance technology

OPTALIGN®V selected special functions

Soft Foot

- a) Press and rotate shaft to 3 or 9 o'clock.
- b) Adjust prism until 0 0 displayed and press ENT
- c) Unbolt the displayed foot, record movement, retighten; press ent and repeat with the next foot.
- d) The results must be carefully analyzed to determine the correct shimming. See examples in the manual.

Extend measurement range

If END or OFF appear during rotation,

- a) turn shaft back until numbers just reappear. Press 🎛
- b) Keeping shaft steady, re-zero prism.
- c) Press 📰 again and continue with measurements.

This function can be used similarily with MOVE (part 6.)

Target alignment at coupling

Press (), enter offset and gap target values for MTBM, following sign conventions in 4. overleaf.

60

Continuously rotating shafts

Semi-automatic measurement with just one keypress in each clock position. F2 = Clockwise. F3 = Anti-clockwise

Press M and chosen start position e.g. 9

Press as shaft rotates past start position, and again at each subsequent clock position.

F4 Thermal growth at machine feet

Press F4 and enter expected MTBM foot growths. 12 and 3 o'clock are positive.

(see manual)

F6 90° restricted shaft rotation

If normal clock positions are not possible, press F6 to display \checkmark . Measure at 10:30, 12:00 and 1:30, but entered with the 9, 0 and 3 keys, thus:

M O ENT 12:00 12:00 1:30 M 3 ENT (a 2nd F6 cancels)

(See manual) 2 coupling plane offsets (see manual)

F8 Alignment tolerances

- a) Press F8 and enter RPM (from 1 to 7200), press
- b) If alignment is within tolerance '**o.k**' flashes otherwise computer beeps twice.

Storing and Printing

Stores up to 5 sets of data. Prints first set of stored data. Exp prints next set. 448.2.94.

Printed in

Copyright 1994 PRÜFTECHNIK AG,

Transfers all stored data to a PC.

OPTALIGN[®] V

Short Instructions

